An Algebraic Multilevel Parallelizable Preconditioner for Large-Scale CFD Problems

نویسندگان

  • Laura C. Dutto
  • Wagdi G. Habashi
  • Michel Fortin
چکیده

An eecient parallelizable preconditioner for solving large-scale CFD problems is presented. It is adapted to coarse-grain parallelism and can be used for both shared and distributed-memory parallel computers. The proposed preconditioner consists of two independent approximations of the system matrix. The rst one is a block-diagonal, fully paralleliz-able approximation of the given system. The second matrix is coarser than the original one and is built using algebraic multi-grid methods. The pre-conditioner is used to compute the steady solution of the compressible Navier-Stokes equations for subsonic laminar ows, on shared-memory computers, for a moderate number of processors. The coupled two-level preconditioner is robust and has a large potential for parallelism. Interesting savings in computational time for parallel computations are obtained when comparing the two-level preconditioner with the well-known incomplete Gaussian factorization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DELFT UNIVERSITY OF TECHNOLOGY REPORT 13-11 Evaluation of Multilevel Sequentially Semiseparable Preconditioners on CFD Benchmark Problems Using IFISS

This paper studies a new preconditioning technique for sparse systems arising from discretized partial differential equations (PDEs) in computational fluid dynamics (CFD), which exploit the multilevel sequentially semiseparable (MSSS) structure of the system matrix. MSSS matrix computations give a data-sparse way to approximate the LU factorization of a sparse matrix from discretized PDEs in li...

متن کامل

Pii: S0168-9274(99)00047-1

We investigate the use of sparse approximate inverse techniques in a multilevel block ILU preconditioner to design a robust and efficient parallelizable preconditioner for solving general sparse matrices. The resulting preconditioner retains robustness of the multilevel block ILU preconditioner (BILUM) and offers a convenient means to control the fill-in elements when large size blocks (subdoma...

متن کامل

Using a compensation principle in algebraic multilevel iteration method for finite element matrices

In the present paper an improved version of the algebraic multilevel iteration (AMLI) method for finite element matrices, which has been suggested in [6], is proposed. To improve the quality of the AMLI-preconditioner or, the same, speed up the rate of convergence the family of iterative parameters defined on an error compensation principle is suggested and analyzed. Performance results on stan...

متن کامل

Algebraic Multilevel Preconditioner for the Helmholtz Equation in Heterogeneous Media

An algebraic multilevel (ML) preconditioner is presented for the Helmholtz equation in heterogeneous media. It is based on a multilevel incomplete LDLT factorization and preserves the inherent (complex) symmetry of the Helmholtz equation. The ML preconditioner incorporates two key components for efficiency and numerical stability: symmetric maximum weight matchings and an inverse-based pivoting...

متن کامل

An Algebraic Multilevel Preconditioner for Field-Circuit Coupled Problems

Quasi stationary magnetic field formulations are often coupled with lumped parameter models for the driving electrical system. The finite element discretization of such formulations yields linear systems with a large sparse coefficient matrix bordered by dense coupling blocks. The presence of these blocks prevents the straightforward application of black box algebraic multigrid solvers. We pres...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997